If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+72t+40=0
a = -16; b = 72; c = +40;
Δ = b2-4ac
Δ = 722-4·(-16)·40
Δ = 7744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7744}=88$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-88}{2*-16}=\frac{-160}{-32} =+5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+88}{2*-16}=\frac{16}{-32} =-1/2 $
| 24x+62x=50.6 | | 6(4x-5)=-3x+12 | | 7x/(6x+1)=0.9 | | 20=90-3q | | .24x+.62x=10 | | -3+3x=-4+2x | | X+y=3y+24 | | 0.0125x=365 | | 0.0125x=1 | | 4y+3y+21y=476 | | F(X)=5*1.07x | | 15y+10y=130 | | 5x-10=102×2 | | P7(2+5v)=3v+14 | | 14=1.3x | | x^2=0.0004-0.004x | | 0.0004-0.004x=x^2 | | 3y÷4=6 | | r=20*0.6 | | 5(4+x)=3(x-1)-9 | | 12*x+8=44 | | 5(4+x)=(x-1)-9 | | X(x+-2)=440 | | 4(x-8)-(2x+7)=Y | | 7x+4+x=12 | | Ax.15=2500 | | (14x-22)+(4x+4)=180 | | 5(2+b)=20b | | 4(x-1)=2(6-4x) | | x+x4=180 | | 8b+2b=12 | | 7x-15=2x+11 |